Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances.

نویسندگان

  • A Justin Nowakowski
  • Steven M Whitfield
  • Evan A Eskew
  • Michelle E Thompson
  • Jonathan P Rose
  • Benjamin L Caraballo
  • Jacob L Kerby
  • Maureen A Donnelly
  • Brian D Todd
چکیده

The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease-related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local-scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic Modifications of Host Genes Induced by Bacterial Infection

Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...

متن کامل

Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant.

Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen ...

متن کامل

Papaya Dieback in Malaysia: A StepTowards A New Insight of Disease Resistance

A recently published article describing the draft genome of Erwiniamallotivora BT-Mardi (1), the causal pathogen of papaya dieback infection in Peninsular Malaysia, hassignificant potential to overcome and reduce the effect of this vulnerable crop (2). The authors found that the draft genome sequenceis approximately 4824 kbp and the G+C content of the genomewas 52-54%, which is very similarto t...

متن کامل

Indirect transmission and the effect of seasonal pathogen inactivation on infectious disease periodicity.

The annual occurrence of many infectious diseases remains a constant burden to public health systems. The seasonal patterns in respiratory disease incidence observed in temperate regions have been attributed to the impact of environmental conditions on pathogen survival. A model describing the transmission of an infectious disease by means of a pathogenic state capable of surviving in an enviro...

متن کامل

Effects of hybridization and life history tradeoffs on pathogen resistance in the Harvester ants (Pogonomyrmex)

A fundamental challenge faced by all organisms is the risk of infection by pathogens that can significantly reduce their fitness. The evolutionary dynamic between hosts and pathogens is expected to be a coevolutionary cycle, as pathogens evolve by increasing their level of virulence and hosts respond by increasing their level of resistance. The factors that influence the dynamics of adaptation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ecology letters

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 2016